Cluster Structures on Simple Complex Lie Groups and Belavin–Drinfeld Classification
نویسندگان
چکیده
منابع مشابه
Cluster Structures on Simple Complex Lie Groups and Belavin–drinfeld Classification
We study natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson–Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin–Drinfeld classification of Poisson–Lie structures on G corresponds to a cluster structure in O(G). We prove a reduction theorem explaining how different parts of the con...
متن کاملRepresentations of Complex Semi-simple Lie Groups and Lie Algebras
This article is an exposition of the 1967 paper by Parthasarathy, Ranga Rao, and Varadarajan, on irreducible admissible Harish-Chandra modules over complex semisimple Lie groups and Lie algebras. It was written in Winter 2012 to be part of a special collection organized to mark 10 years and 25 volumes of the series Texts and Readings in Mathematics (TRIM). Each article in this collection is int...
متن کاملEinstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملClassification of abelian complex structures on 6-dimensional Lie algebras
Let g be a Lie algebra, J an endomorphism of g such that J = −I , and let g be the ieigenspace of J in g := g ⊗R C. When g is a complex subalgebra we say that J is integrable, when g is abelian we say that J is abelian and when g is a complex ideal we say that J is bi-invariant. We note that a complex structure on a Lie algebra cannot be both abelian and biinvariant, unless the Lie bracket is t...
متن کاملGeneralized Lie Bialgebras and Jacobi Structures on Lie Groups
We study generalized Lie bialgebroids over a single point, that is, generalized Lie bialgebras. Lie bialgebras are examples of generalized Lie bialgebras. Moreover, we prove that the last ones can be considered as the infinitesimal invariants of Lie groups endowed with a certain type of Jacobi structures. We also propose a method to obtain generalized Lie bialgebras. It is a generalization of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Moscow Mathematical Journal
سال: 2012
ISSN: 1609-3321,1609-4514
DOI: 10.17323/1609-4514-2012-12-2-293-312